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A Brief Discussion of Informational Entropy

Entropy is an abstract principle that is often thought of as a
measure of “randomness” or “chaos”. While this is a helpful
way of interpreting entropy, it is not the only interpretation.
Here, entropy will be discussed in terms of information theory,
which includes the interpretation of entropy as measuring the
“amount of information” present. For completeness, entropy is
also interpreted in information theory as a measure of “surprise”
or “uncertainty,” but this discussion will heuristically focus on
the “amount of information” interpretation.

First, a technical definition of entropy is given, which is then
unpacked using two simple, demonstrative examples. Next, the
principle of maximum entropy is introduced in order to under-
stand how entropy maximization algorithms use relative en-
tropy to build a digital population.

What is Entropy?

Consider a system with distribution 𝑋. The entropy of 𝑋 is
defined in words as a measure of the amount of information in
𝑋; however, the mathematical definition is much more useful.
In mathematics, the entropy 𝐻(𝑋) of the distribution 𝑋 is
defined as:

𝐻(𝑋) = −
𝑛

∑
𝑖=1

𝑃(𝑥𝑖) ln 𝑃(𝑥𝑖)

with the probability of event 𝑥𝑖 occurring 𝑃(𝑥𝑖); the natural log
operator ln; and the sigma operator ∑𝑛

𝑖=1, which denotes taking
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the sum of all 𝑛 possible states. To see how the mathematical
definition is useful, consider the entropy of a fair-coin toss and
a fair-die roll.

A fair coin is one that when flipped has equal probability of
landing heads up as it does heads down. In terms of the math-
ematical definition, the two possible events with corresponding
probabilities are given in the table below.

Event Probability of Event
𝑥1 ≡ heads up 𝑃(𝑥1) = 1

2
𝑥2 ≡ tails up 𝑃(𝑥2) = 1

2

The entropy of a fair-coin toss 𝑋 is therefore

𝐻(𝑋) = − [[1
2 ln 1

2] + [1
2 ln 1

2]] = ln 2 ≈ 0.693

.

A fair die is one that when rolled has an equal probability of
landing on any of the sides. For this example, the canonical
six-sided, fair die is used with events given below.

Event Probability of Event
𝑥1 ≡ roll a 1 𝑃(𝑥1) = 1

6
𝑥2 ≡ roll a 2 𝑃(𝑥2) = 1

6
𝑥3 ≡ roll a 3 𝑃(𝑥3) = 1

6
𝑥4 ≡ roll a 4 𝑃(𝑥4) = 1

6
𝑥5 ≡ roll a 5 𝑃(𝑥5) = 1

6
𝑥6 ≡ roll a 6 𝑃(𝑥6) = 1

6

Following the same procedure as before, the corresponding en-
tropy of a fair-die roll 𝑌 is

𝐻(𝑌 ) = ln 6 ≈ 1.792

What does it mean, though, for a fair-coin toss to have an
entropy of 𝐻(𝑋) ≈ 0.693 and a fair-die roll to have an entropy
of 𝐻(𝑌 ) ≈ 1.792? Furthermore, why does the coin toss have
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less entropy, and what does that mean? These questions are
best answered by comparing the two calculated entropies.

First, since 𝐻(𝑌 ) > 𝐻(𝑋), the state of a fair-die roll holds more
information than the state of a fair-coin toss. Put differently,
if a coin is tossed heads up, it is immediately known that the
coin is also tails down—“everything” is known about the coin.
If a fair-die rolls a one and is oriented so that each of the sides
face one of the cardinal directions, it is clear that the face-
down number is six; however, it is not clear which number is
facing North. In other words, more information is needed to
know “everything” about the die roll. (Specifically, to fully
describe the state of the system, the number facing North is
also required—then “everything” is known about the die roll.)
Therefore, describing the state of a fair-die roll requires more
information than a fair-coin toss.

Note, this does not imply that one is necessarily “better” than
the other. To make such a judgment would require more in-
formation regarding why the entropy is being calculated in the
first place. For instance, if the smallest unit of information is
sought, the fair-coin would be judged “better” than the fair-die.
The following section discusses another way entropy can also
be used to make judgment calls when invoking the principle of
maximum entropy.

Principle of Maximum Entropy

To understand when it is appropriate to use entropy as a tool for
choosing the better of multiple distributions, consider now the
case of two candidate distributions 𝐴 and 𝐵 that both describe
the same target distribution 𝐶 with corresponding entropies
𝐻(𝐴), 𝐻(𝐵), and 𝐻(𝐶). The principle of maximum entropy
suggests that if 𝐻(𝐴) > 𝐻(𝐵), 𝐴 has more information about
the target distribution 𝐶 and is therefore the better of the two
candidates. Therefore, if a large set of candidate distributions
can be produced, the best candidate from the set can be chosen.
This is the foundational concept that entropy maximization al-
gorithms (EMA) exploit; however, many EMAs actually use
relative entropy as an objective function and attempt to mini-
mize the objective function.
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Relative Entropy

Consider again the candidate distributions 𝐴 and 𝐵 and tar-
get distribution 𝐶 from above. The relative entropy 𝐷(𝑋||𝐶)
between candidate distribution 𝑋 and target distribution 𝐶 is
given by

𝐷(𝑋||𝐶) = 𝐻(𝐶) − 𝐻(𝑋)

If 𝐷(𝐴||𝐶) < 𝐷(𝐵||𝐶), distribution 𝐴 is the ideal candidate.
Note, 𝐷(𝐴||𝐶) < 𝐷(𝐵||𝐶) and 𝐻(𝐴) > 𝐻(𝐵) are equivalent
statements, because

𝐷(𝐴||𝐶) < 𝐷(𝐵||𝐶) →𝐻(𝐶) − 𝐻(𝐴) < 𝐻(𝐶) − 𝐻(𝐵)
→ − 𝐻(𝐴) < −𝐻(𝐵)
→𝐻(𝐴) > 𝐻(𝐵).

If 𝐷(𝐴||𝐶) = 0, then 𝐴 = 𝐶.

4


	A Brief Discussion of Informational Entropy

